Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
J Control Release ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38735394

The sulfate radical (SO4•-), known for its high reactivity and long lifespan, has emerged as a potent antimicrobial agent. Its exceptional energy allows for the disruption of vital structures and metabolic pathways in bacteria that are usually inaccessible to common radicals. Despite its promising potential, the efficient generation of this radical, particularly through methods involving enzymes and photocatalysis, remains a substantial challenge. Here, we capitalized on the peroxidase (POD)-mimicking activity and photocatalytic properties of cerium oxide (CeO2) nanozymes, integrating these properties with the enhanced concept of plasma gold nanorod (GNR) to develop a half-encapsulated core@shell GNRs@CeO2 Janus heterostructure impregnated with persulfate. Under near-infrared irradiation, the GNRs generate hot electrons, thereby boosting the CeO2's enzyme-like activity and initiating a potent reactive oxygen species (ROS) storm. This distinct nanoarchitecture facilitates functional specialization, wherein the heterostructure and efficient light absorption ensured continuous hot electron flow, not only enhancing the POD-like activity of CeO2 for the production of SO4•- effectively, but also contributing a significant photothermal effect, disrupting periodontal plaque biofilm and effectively eradicating pathogens. Furthermore, the local temperature elevation synergistically enhances the POD-like activity of CeO2. Transcriptomics analysis, as well as animal experiments of the periodontitis model, have revealed that pathogens undergo genetic information destruction, metabolic disorders, and pathogenicity changes in the powerful ROS system, and profound therapeutic outcomes in vivo, including anti-inflammation and bone preservation. This study demonstrated that energy transfer to augment nanozyme activity, specifically targeting ROS generation, constitutes a significant advancement in antibacterial treatment.

2.
J Am Chem Soc ; 146(13): 8991-9003, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38513217

Though immunogenic cell death (ICD) has garnered significant attention in the realm of anticancer therapies, effectively stimulating strong immune responses with minimal side effects in deep-seated tumors remains challenging. Herein, we introduce a novel self-assembled near-infrared-light-activated ruthenium(II) metallacycle, Ru1105 (λem = 1105 nm), as a first example of a Ru(II) supramolecular ICD inducer. Ru1105 synergistically potentiates immunomodulatory responses and reduces adverse effects in deep-seated tumors through multiple regulated approaches, including NIR-light excitation, increased reactive oxygen species (ROS) generation, selective targeting of tumor cells, precision organelle localization, and improved tumor penetration/retention capabilities. Specifically, Ru1105 demonstrates excellent depth-activated ROS production (∼1 cm), strong resistance to diffusion, and anti-ROS quenching. Moreover, Ru1105 exhibits promising results in cellular uptake and ROS generation in cancer cells and multicellular tumor spheroids. Importantly, Ru1105 induces more efficient ICD in an ultralow dose (10 µM) compared to the conventional anticancer agent, oxaliplatin (300 µM). In vivo experiments further confirm Ru1105's potency as an ICD inducer, eliciting CD8+ T cell responses and depleting Foxp3+ T cells with minimal adverse effects. Our research lays the foundation for the design of secure and exceptionally potent metal-based ICD agents in immunotherapy.


Antineoplastic Agents , Neoplasms , Ruthenium , Humans , Ruthenium/pharmacology , Reactive Oxygen Species , Immunogenic Cell Death , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Lysosomes , Cell Line, Tumor
3.
Angew Chem Int Ed Engl ; 63(14): e202319690, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38320965

Given the scarcity of novel antibiotics, the eradication of bacterial biofilm infections poses formidable challenges. Upon bacterial infection, the host restricts Fe ions, which are crucial for bacterial growth and maintenance. Having coevolved with the host, bacteria developed adaptive pathways like the hemin-uptake system to avoid iron deficiency. Inspired by this, we propose a novel strategy, termed iron nutritional immunity therapy (INIT), utilizing Ga-CT@P nanocomposites constructed with gallium, copper-doped tetrakis (4-carboxyphenyl) porphyrin (TCPP) metal-organic framework, and polyamine-amine polymer dots, to target bacterial iron intakes and starve them. Owing to the similarity between iron/hemin and gallium/TCPP, gallium-incorporated porphyrin potentially deceives bacteria into uptaking gallium ions and concurrently extracts iron ions from the surrounding bacteria milieu through the porphyrin ring. This strategy orchestrates a "give and take" approach for Ga3+/Fe3+ exchange. Simultaneously, polymer dots can impede bacterial iron metabolism and serve as real-time fluorescent iron-sensing probes to continuously monitor dynamic iron restriction status. INIT based on Ga-CT@P nanocomposites induced long-term iron starvation, which affected iron-sulfur cluster biogenesis and carbohydrate metabolism, ultimately facilitating biofilm eradication and tissue regeneration. Therefore, this study presents an innovative antibacterial strategy from a nutritional perspective that sheds light on refractory bacterial infection treatment and its future clinical application.


Bacterial Infections , Gallium , Porphyrins , Humans , Iron/metabolism , Hemin/metabolism , Bacteria/metabolism , Anti-Bacterial Agents/metabolism , Biofilms , Gallium/pharmacology , Porphyrins/pharmacology , Porphyrins/metabolism , Bacterial Infections/drug therapy , Homeostasis , Ions/metabolism , Polymers/metabolism
4.
J Inflamm Res ; 17: 853-863, 2024.
Article En | MEDLINE | ID: mdl-38348278

Background: Xijiao Dihuang decoction (XJDHT), a traditional Chinese medicine, is widely used to treat patients with sepsis. However, the mechanisms underlying the effects of XJDHT on cardiac dysfunction have yet to be fully elucidated. The present study evaluated the potential utility of XJDHT in protecting against sepsis-induced cardiac dysfunction and myocardial injury. Methods: The mice were randomly divided into 3 groups and administered Lipopolysaccharide (LPS,10 mg/kg) or equivalent saline solution (control) and treated with XJDHT (10 g/kg/day) or saline by gavage for 72 hours. XJDHT was dissolved in 0.9% sodium chloride and administered at 200 µL per mouse. Transthoracic echocardiography, RNA-seq, TUNEL assays and hematoxylin and eosin (H&E) staining of cardiac tissues were performed. Results: Treatment with XJDHT significantly enhanced myocardial function and attenuated pathological change, infiltration of inflammatory cells, levels of TNF-α, IL-1ß and expression of TLR4 and NF-κB in mice with sepsis. RNA sequencing and Kyoto Encyclopedia of Genes and Genomes pathway analyses identified 531 differentially expressed genes and multiple enriched signaling pathways including the PI3K/AKT pathway. Further, XJDHT attenuated cardiac apoptosis and decreased Bax protein expression while increasing protein levels of Bcl-2, PI3K, and p-AKT in cardiac tissues of mice with sepsis. Conclusion: In summary, XJDHT improves cardiac function in a murine model of sepsis by attenuating cardiac inflammation and apoptosis via suppressing the TLR4/NF-κB pathway and activating the PI3K/AKT pathway.

5.
Chem Commun (Camb) ; 59(52): 8127-8130, 2023 Jun 27.
Article En | MEDLINE | ID: mdl-37306950

A simple yet powerful D-A type-based NIR-II fluorophore (MTF) with mitochondria targeting was constructed. This mitochondrial targeting dye MTF exhibited not only a photothermal effect but also photodynamic performance, and was further fabricated with DSPE-mPEG to generate nanodots for in vivo experiments, achieving strong NIR-II fluorescence tracing of tumors and impressive NIR-II image-guided photodynamic therapy (PDT) and photothermal therapy (PTT).


Nanoparticles , Neoplasms , Photochemotherapy , Humans , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Photothermal Therapy , Diagnostic Imaging , Mitochondria , Phototherapy , Cell Line, Tumor
6.
J Mater Chem B ; 11(14): 3038-3053, 2023 04 05.
Article En | MEDLINE | ID: mdl-36919487

Recently, newly developed carbon-based nanomaterials known as carbon dots (CDs) have generated significant interest in nanomedicine. However, current knowledge regarding CD research in the biomedical field is still lacking. An overview of the most recent development of CDs in biomedical research is given in this review article. Several crucial CD applications, such as biosensing, bioimaging, cancer therapy, and antibacterial applications, are highlighted. Finally, CD-based biomedicine's challenges and future potential are also highlighted to enrich biomedical researchers' knowledge about the potential of CDs and the need for overcoming various technical obstacles.


Nanostructures , Quantum Dots , Carbon , Drug Delivery Systems , Nanomedicine
7.
Chem Soc Rev ; 52(1): 30-46, 2023 Jan 03.
Article En | MEDLINE | ID: mdl-36511945

Mechanical stimulation utilizing deep tissue-penetrating and focusable energy sources, such as ultrasound and magnetic fields, is regarded as an emerging patient-friendly and effective therapeutic strategy to overcome the limitations of conventional cancer therapies based on fundamental external stimuli such as light, heat, electricity, radiation, or microwaves. Recent efforts have suggested that mechanical stimuli-driven cancer therapy (henceforth referred to as "mechanical cancer therapy") could provide a direct therapeutic effect and intelligent control to augment other anti-cancer systems as a synergistic combinational cancer treatment. This review article highlights the latest advances in mechanical cancer therapy to present a novel perspective on the fundamental principles of ultrasound- and magnetic field-mediated mechanical forces, including compression, tension, shear force, and torque, that can be generated in a cellular microenvironment using mechanical stimuli-activated functional materials. Additionally, this article will shed light on mechanical cancer therapy and inspire future research to pursue the development of ultrasound- and magnetic-field-activated materials and their applications in this field.


Neoplasms , Humans , Neoplasms/therapy , Mechanical Phenomena , Magnetic Fields , Tumor Microenvironment
8.
Angew Chem Int Ed Engl ; 62(13): e202214875, 2023 03 20.
Article En | MEDLINE | ID: mdl-36545827

Despite significant effort, a majority of heavy-atom-free photosensitizers have short excitation wavelengths, thereby hampering their biomedical applications. Here, we present a facile approach for developing efficient near-infrared (NIR) heavy-atom-free photosensitizers. Based on a series of thiopyrylium-based NIR-II (1000-1700 nm) dyads, we found that the star dyad HD with a sterically bulky and electron-rich moiety exhibited configuration torsion and significantly enhanced intersystem crossing (ISC) compared to the parent dyad. The electron excitation characteristics of HD changed from local excitation (LE) to charge transfer (CT)-domain, contributing to a ≈6-fold reduction in energy gap (ΔEST ), a ≈10-fold accelerated ISC process, and a ≈31.49-fold elevated reactive oxygen species (ROS) quantum yield. The optimized SP@HD-PEG2K lung-targeting dots enabled real-time NIR-II lung imaging, which precisely guided rapid pulmonary coronavirus inactivation.


Coronavirus Infections , Coronavirus , Humans , Photosensitizing Agents/pharmacology , Thiophenes
9.
J Med Chem ; 65(3): 2225-2237, 2022 02 10.
Article En | MEDLINE | ID: mdl-34994554

The clinical success of cisplatin ushered in a new era of the application of metallodrugs. When it comes to practice, however, drug resistance, tumor recurrence, and drug systemic toxicity make it implausible to completely heal the patients. Herein, we successfully transform an electron acceptor [1, 2, 5]thiadiazolo[3,4-g]quinoxaline into a novel second near-infrared (NIR-II) fluorophore H7. After PEGylation and chelation, HL-PEG2k exhibits a wavelength bathochromic shift, enhanced photothermal conversion efficiency (41.77%), and an antineoplastic effect against glioma. Its potential for in vivo tumor tracking and image-guided chemo-photothermal therapy is explored. High levels of uptake and high-resolution NIR-II imaging results are thereafter obtained. The hyperthermia effect could disrupt the lysosomal membranes, which in turn aggravate the mitochondria dysfunction, arrest the cell cycle in the G2 phase, and finally lead to cancer cell apoptosis. HL-PEG2k displays a superior biocompatibility and thus can be a potential theranostic platform to combat the growth and recurrence of tumors.


Coordination Complexes/chemistry , Infrared Rays , Ruthenium/chemistry , Apoptosis/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Cell Line, Tumor , Coordination Complexes/pharmacology , Coordination Complexes/therapeutic use , Drug Design , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Fluorescent Dyes/therapeutic use , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Hyperthermia, Induced , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/therapy , Phenazines/chemistry , Photothermal Therapy/methods , Polyethylene Glycols/chemistry , Quantum Theory , Spectroscopy, Near-Infrared
10.
Chem Commun (Camb) ; 56(22): 3289-3292, 2020 Mar 17.
Article En | MEDLINE | ID: mdl-32073036

Near-infrared fluorescence imaging in the 1000-1700 nm-wavelength window (NIR-II) has exhibited great potential for deep-tissue bioimaging due to its diminished auto-fluorescence, suppressed photo-scattering, deep penetration, and high spatial and temporal resolutions. Various kinds of inorganic nanomaterials have been extensively developed for NIR-IIa (1300-1400 nm) and NIR-IIb (1500-1700 nm) bioimaging. However, the development of small-molecule NIR-IIa and NIR-IIb fluorophores is still in its infancy. Herein, we designed and synthesized a novel NIR-II organic aggregation-induced emission (AIE) fluorophore (HQL2) with a fluorescence tail extending into the NIR-IIa and NIR-IIb region based on our previous reported skeleton Q4. The encapsulated NIR-II AIE nanoparticles (HQL2 dots) exhibited water solubility and biocompatibility, and high brightness for NIR-IIa and NIR-IIb vascular imaging in vivo, a first for NIR-II AIE dots.


Fluorescent Dyes/chemistry , Spectroscopy, Near-Infrared/methods , Animals , Biocompatible Materials/chemistry , Blood Vessels/diagnostic imaging , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Nude , Nanoparticles/chemistry , Neoplasms/diagnostic imaging , Optical Imaging , Quantum Theory , Transplantation, Heterologous
11.
Adv Healthc Mater ; 9(1): e1901224, 2020 01.
Article En | MEDLINE | ID: mdl-31793757

Osteosarcoma is an aggressive tumor of mesenchymal origin that is more likely to spread to the lung than others, with a major impact on patients' prognosis. The optimal imaging method that can reliably detect or exclude pulmonary metastases from osteosarcoma is still scarce. Herein, two homologous types of fluorescent probes CH1055-PEG-PT and CH1055-PEG-Affibody, which show highly promising results for targeting imaging of osteosarcoma and its lung metastasis, respectively, are designed and synthesized. It is found that the NIR-II imaging quality of CH1055-PEG-PT is far superior to that of computed tomography for the early in vivo 143B tumor imaging, and this probe-guided surgery for accurate resection of 143B tumor is further performed. The high-resolution visualization of primary and micrometastatic lung lesions of osteosarcoma by using CH1055-PEG-Affibody is also demonstrated. Therefore, the attractive imaging properties of CH1055-PEG-PT and CH1055-PEG-Affibody, including high levels of uptakes, and high spatial and temporal resolution, open up opportunities for molecular imaging and clinical translation of osteosarcoma and its lung metastasis in the unique second near-infrared window.


Bone Neoplasms/diagnostic imaging , Fluorescent Dyes/chemistry , Lung Neoplasms/diagnostic imaging , Optical Imaging/methods , Osteosarcoma/diagnostic imaging , Animals , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Female , Fluorescent Dyes/metabolism , Fluorescent Dyes/pharmacology , Humans , Lung Neoplasms/secondary , Mice , Mice, Nude , Osteosarcoma/pathology , Phenylpropionates/chemistry , Polyethylene Glycols/chemistry , Recombinant Fusion Proteins/chemistry , Spectroscopy, Near-Infrared , Thiadiazoles/chemistry , Tissue Distribution , Xenograft Model Antitumor Assays
...